sat suite question viewer
Advanced Math
/ Nonlinear equations in one variable and systems of equations in two variables
Difficulty: Hard
What is the smallest solution to the given equation?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
Explanation
The correct answer is . Squaring both sides of the given equation yields , which can be rewritten as . Subtracting and from both sides of this equation yields . This quadratic equation can be rewritten as . According to the zero product property, equals zero when either or . Solving each of these equations for yields or . Therefore, the given equation has two solutions, and . Of these two solutions, is the smallest solution to the given equation.